If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-40x+10=0
a = 25; b = -40; c = +10;
Δ = b2-4ac
Δ = -402-4·25·10
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-10\sqrt{6}}{2*25}=\frac{40-10\sqrt{6}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+10\sqrt{6}}{2*25}=\frac{40+10\sqrt{6}}{50} $
| -2(x+2)=26 | | 3x+1.5+180+x=455 | | (-5p+4)(2p-8)=0 | | |9+7x|=30 | | 3y^=28 | | 3v^2-14v-24=0 | | 11-4*n=6n | | -2v+7/4=-1/4v-1/3 | | x(2x^2-5)=0 | | -2t-16t+19t=11 | | −24−8b=4(4+3b) | | -7(2x+4)=32 | | 23.084+y=19.6 | | 15x-11x-18x=52 | | 3=2x^2-3x+1 | | 29-3(1-x)=8 | | 75=11^x | | (6x-2)^2=15 | | )−24−8b=4(4+3b) | | 5/8-3/2=x | | 3x(8-2)+1=486 | | (5x+1)+76=180 | | 1+2b+3=-(1-b)-(b-1) | | 67+56+x=48 | | 3x+8=(4x-6)+8 | | 3(2x-3)+5=20-2x | | 48g-9=0.62 | | 17x+11=4(4x+1) | | 2/3x-5/6=-1/4x+4/3 | | b/3.2=-6 | | (2x+1)/9-(x+4)/6=1 | | 3x+2x+14=3 |